Efficient DNA Fingerprinting Based on the Targeted Sequencing of Active Retrotransposon Insertion Sites Using a Bench-Top High-Throughput Sequencing Platform

نویسندگان

  • Yuki Monden
  • Ayaka Yamamoto
  • Akiko Shindo
  • Makoto Tahara
چکیده

In many crop species, DNA fingerprinting is required for the precise identification of cultivars to protect the rights of breeders. Many families of retrotransposons have multiple copies throughout the eukaryotic genome and their integrated copies are inherited genetically. Thus, their insertion polymorphisms among cultivars are useful for DNA fingerprinting. In this study, we conducted a DNA fingerprinting based on the insertion polymorphisms of active retrotransposon families (Rtsp-1 and LIb) in sweet potato. Using 38 cultivars, we identified 2,024 insertion sites in the two families with an Illumina MiSeq sequencing platform. Of these insertion sites, 91.4% appeared to be polymorphic among the cultivars and 376 cultivar-specific insertion sites were identified, which were converted directly into cultivar-specific sequence-characterized amplified region (SCAR) markers. A phylogenetic tree was constructed using these insertion sites, which corresponded well with known pedigree information, thereby indicating their suitability for genetic diversity studies. Thus, the genome-wide comparative analysis of active retrotransposon insertion sites using the bench-top MiSeq sequencing platform is highly effective for DNA fingerprinting without any requirement for whole genome sequence information. This approach may facilitate the development of practical polymerase chain reaction-based cultivar diagnostic system and could also be applied to the determination of genetic relationships.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-wide LORE1 retrotransposon mutagenesis and high-throughput insertion detection in Lotus japonicus.

Use of insertion mutants facilitates functional analysis of genes, but it has been difficult to identify a suitable mutagen and to establish large populations for reverse genetics in most plant species. The main challenge is developing efficient high-throughput procedures for both mutagenesis and identification of insertion sites. To date, only floral-dip T-DNA transformation of Arabidopsis has...

متن کامل

Construction of a linkage map based on retrotransposon insertion polymorphisms in sweetpotato via high-throughput sequencing

Sweetpotato (Ipomoea batatas L.) is an outcrossing hexaploid species with a large number of chromosomes (2n = 6x = 90). Although sweetpotato is one of the world's most important crops, genetic analysis of the species has been hindered by its genetic complexity combined with the lack of a whole genome sequence. In the present study, we constructed a genetic linkage map based on retrotransposon i...

متن کامل

مروری برتکنیک های توالی یابی D‏NA (نسل اول، نسل دوم و نسل سوم)

Introduction: The DNA sequencing is the most important technique in molecular biology by which the order of the nucleotides can be identified in a piece of DNA. There are several different methods for sequencing the DNA. Now, the DNA sequencing has great importance in the medical diagnostics and other medical fields. Some methods have been invented to speed up and increase the efficiency of the...

متن کامل

High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture

Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses seq...

متن کامل

Hydrodynamic shearing of DNA in a polymeric microfluidic device.

With the advent of next-generation sequencing (NGS) systems and the associated high throughput they afford, the input to these machines requires manageable lengths of fragments (~1000 bp) produced from chromosomal DNAs. Therefore, it is critical to develop devices that can shear DNA in a controlled fashion. We report a polymer-based microfluidic device that establishes an efficient and inexpens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2014